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ABSTRACT

In this paper we extend the SIR epidemic modelsictamed in [1], from a deterministic framework tstachastic
one, and we formulate it as a stochastic diffee¢mijuation. We present a Picard iteration metHqataving verification
theorem for the existence and uniqueness of theignlin global behavior. As a side effect of thiady, we move one the
development of the numerical treatment to solve dbesidered problem using the Milstein’s schemecoMparative

numerical study is done using some values of ttengity of the stochastic environment around thaearic equilibrium.

KEYWORDS: SIR Model, Numerical Simulation, Stochastic PregeRicard Iteration, Brownian Motion, Stochastic

Differential Equation
1. INTRODUCTION

In 1927, 1932 and 1933 W.O. Kermack and A.G. McK&kdoublished a series of papers titled Contritusi to
the mathematical theory of epidemics. Those papegsoften seen as the basis of further researanathematical
(especially deterministic) modelling of the spreafl infectious diseases. The first three papers efnkack and
McKendrick are reprinted in [10]. In the book ofdBmann and Heesterbeek [11] some of the resultéeahack and

McKendrick and other deterministic models are pnesg and explained.

Other deterministic epidemiology models were thewetoped in papers by Ross, Ross and Hudson, Maxtid
Lotka [5][8][9]. Mathematical epidemiology seemshave grown exponentially starting in the middlgted 20th century
(the first edition in 1957 of Bailey’s book [7] & important landmark), so that a tremendous wadgtodels have now

been formulated, mathematically analyzed, and egpb infectious diseases.

Allen [4] discusses a stochastic model of the al#®h& epidemic model. However this is done by catsing a
stochastic differential equation (SDE) approximatio the continuous time. The latter is obtainechbsuming that events
occurring at a constant rate in the deterministisdeh occur according to a Poisson process with siiume rate.
McCormack and Allen [12] construct a similar SDEpegximation to an SIS multihost epidemic model axglore the
stochastic and deterministic models numericalljhedprevious work on parameter perturbation in @mid models seems
to have concentrated on the SIR model. Tornatosec@lato and Vetro [6] discuss an SDE SIR systéth and without

delay with a similar parameter perturbation. Howetés is not the only way to introduce stochasfiaito the model.

The population is divided into three distinct clssthe susceptible S, "healthy individuals who catch the
disease”, the infected | , "those who have theadiseand can transmit it”, and the removed R, "iiddials who have had

the disease and are now immune to the infectionrémoved from further propagation of the dis- ehgesome other
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means). Schematically, the individugdes through consecutive sti S— | — R. Such models are often called the :

models.
2. STOCHASTIC STUDY

The SIR Model is useth the modeling of infectious diseases by computihg amount opeople in a closed

population that are susceptibiefected or recovered at a given period of time.

The model is also used by researc and healtlofficials to explain the increase and decr in people needing
medical care for a certatfisease durg an epidemic. The SIR model is the basis for o$ivailar models. Th SI model,
also known as the SIS model, is thedel where once a per: is no longer infectioughis per- son becomes susceptible
once again. The common cold can be modeled withSI model. There is also th8EIR model, where people
categorizedas susceptible, exposed, infected, or recovered.SIR model can be adjusted to include variatioa th

seasonal changes as seen by BaunthEarn.[12
2.1. Stochastic Differential Equationfor SIR Model

we consider the SIR model gi\ by :

: S aST
B=prBlla—-] ————_
T g A-) 1+al
: as
I = — — ]
. 1 +al !
R=~I—-6R 21

The model has a susceptilgoug designated by S, an infected group |, anm@covere group R with permanent
immunity, rc is the intrinsiggrowth rati of susceptible, k is the carrying capacity of thesceptible in the absence of
infective, a is the maximunvalues of per capi reduction rate of S du to I, a is half saturationstantsy is the natural

recover rate from infection aridis thedeath rate of recovered populations.

In the filteredprobability spaceQ, F, (Ft )20, P), we consider thgtochastic version of deterministic SIR mo

(2.1), given by :
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dR, = | 41 - .SH) dt + o H(S,I. R)dW

%

2.2)

with the initial conditionsS(0} = S0, | (0) =10, R(0) = RO, arf8l | and R represent { number of susceptible,
infective and recovered individualggspectively ¢S F (S, | , R)ol G(S, | , R) andoR H (S, | , R are the diffusion
coefficients withei (i = S, R, | ) are re. constants and knowes the intensity of environmental fluctuations, (i = S, R,

) are independent standard Brownranotions

The aim of the followingsubsectio is to study the existence andiqueness of considel problem (2.2), than to
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present the numerical resolutidfurthe- more we complete our study by giving numerieolution for different values
of ck with{k =S, | , R}.

2.2. Existence and Uniqueness &olution
2.2.1. Global Behavior

Throughout the rest of thhapter, le (Q, F, (Ft)&0, P) be a completifitered probability space. In this space,
f () and g(.) be boundedeasurable functions mapp Rk into Rkand into the space of real k x n matri respectively.

We now Consider the generablimensionz stochastic system :
dXt =f (t, Xt )dt +g(t, Xt )dW! (2.3)

on t> 0 with initial value X (0) = X0 , the solution @enotei by X (t, X0 ) : Assume that f (t, 0) = g(t, 0) =f@r
all t> 0 Thus, we consider solutions to
i [
X =Xo+ f fls, X, )ds + [ gls, X, )dW,
]

W] | (24)

By a solution to th&IDE described by (2.4) we mean a continuou-adapted process X (.) which satisfies (.

with probability one.

If the following assumptions are satist

e The functions f, g, are measurable.

For every t € [0,T), z,2" € R", and there exists two constants K, K, such that,

o | f(t,2) = f(t, @)+ llg(t, z) — g(t, )| < Ki(fle — ']
o [If(t,2)* + lg(t,2)* < KF(1+ |l2]®)
o X are square-integrable.

Then the solution of the system (2.3) is unique, for more details see [3].

Remark 2.1. If we Taking X = (5.1, R),
f= rcS(l ~ -S—) ) e b — 41,41 |,

k 1+al’1+al

g= (GSF(S, I,R),01G(S,I,R),0rH(S,1, R))
then the SDE (2.2) has an strong unique solution.
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2.3. Proof
Case 1:

Let’s consider t € [0, T],

X = (SLR), X = (S,I,R) € Q =|s1,8[x]i1,ia[x]r1,ro[ with

81, 89,11,%9, 71 and 1y are the constants, and we defined | X|| = \/z §2 4+ 1%+ R?
We take F(S,I,R) = S,G(S,I,R) =TI and H(S,I,R) = R.

We have g = (055,011,0rR). So
| g(t, X)—g(t, X) | <K | X-X |

With K = mazs (0%,0%,0%)

Let's consider f = (fy, fo, f3) With:

3 :rCS(l—%) _aSl

r. 1+al
(0}
b= -
fa= ol
' 2r.89 S9 '
tX)-f(t.X ) <m .t — a—||X =X
)~ i) < ma (4 222 402 i -

it )~ b )] < (a’“ﬁ + 'r) X-X|
So

£t X) = (8, X') + lg(t, X) - g(t, X)| < Ka(|X - X))

With
2r.89

_ . §9 . (¥$9 .
Kl—max{((chr ; +Q)’0(1+a-i1}2)'(0"&(1+ai1)9+7)’K}

For the second inequality we have:

IAEX <%
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. 2
tX)|? < Jofocd Jp S8
I < (raa(1+3) + 222
2

(1891 \
It X)) < ( 2’?’+~.a-2)

1+ aty

Let’s consider

i ; 2
bt : 52 (Sly (t8aig .
K —m-ﬂ.[‘{(lcs-g(l-l- k)+ 1-|-at'1) ’(l—l-ﬂil -I—';.Jaz) }

And
lg(t, X)||* < maz(o:, 07,03 )X
S0 we have
LA )2 + lgtt, X)I? < K' + maz(o?, 02, 03) | X
< K} + K[ X|P
Case 2:

We take F(S.I,R) = exp(S),G(S,1.R) = exp(I). and H(S.I. R) = exp(R).
We have g = (crs exp(S).opexp(I), o5 exp(R}).
We Know that:

lg(t, X)—g(t, X")|| = \l (cr"g ( exp(S) — exP(S’)) £ + 02 (EXP(IJ - exp(f’}) 2 +0? (exp(H) - exp{R’)) 2)

using the following classical relation of exponential function exp(y) > 1+y Yy €
R. We pet,

Jexa(5) - exp(S)] < | exp(5)||H1 ~exp(s - SJH
< exp(sy)[|S — &)
by the same reasoning we obtain.

|| exp(I) — exp(I')|| < explis)||] - I'||
|exp(R) — exp(R')|| < exp(r2)||R - K|

which shows that:

|£(t.X) = £t X')]| + lglt, X) — g(t, X)]| < K, (|X - X))
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with

} 2r 59 52 2
P e N . wm X o
; mar{((rc—i-*—m—k +a)'a{1-|—m'.1}2)' (a-ﬂ{l—l—ail]g-l-'}) 11}

such that Ky; = Kma;r(exp{ig].. Exp{sﬂ,exph'g})

For the second inequality we have:
lg(t, X)||> = 02 exp(2S) + 67 exp(2I) + 6% exp(2R)
< K? [exp{ES}(l +exp(—2(S —I)) + exp(—2(S — R]I)):|

1 1
< K*? 252 |1 +
< Koexp(2s2) |1+ o717y (S—R+1}2]

< K?exp(2s,)

(S =T+ 1P 5 —R41)P i (5= R[5 +3)°
(S—T+1)2(S—R+1)2 (S—T+1)2(S—R+1)2 }

< K?exp(2ss) -[S—I—i—l}z(S—R-l—l)g—{-{S—R-l— 1)% + I[S—I—Fl}z}

< K?exp(2sy)|(s3 — iy +1)%(so — 1y + 1) + 52 + 2+ 455 + ||X||2}
< KP|X|I2

And we know that
I F(¢, X)||* < K
< K
So we obtain:
£ (&, XN1* + llg(t, X)I* < KP(2+ || X]1%)
So
£ (&, X)I* + llg(t, X)I* < KZ2(1+ || X]|?)
With K > 2K}

2.4. endemic equilibrium

The deterministic SIR system admits a unique endemic equilibrium E* =
(S, I*, R*), with

g Y1+ al*)
o
- akar. — 2r.ay — o’k + VA
o 2r.a?y
L
i}
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A = [akar, — 2r.ay — a?k]? + 4r.a®y(kar, — ry)
For more details. refer to [14] and references therein.

2.5. Numerical Simulation andDynamics Comparison
In this study, we wilconstruct an implement numerical methods for solvingttchastic Differentii Equations”

(SDEs) using MATLAB.An SDE is a differentii equationin which one or more of the terr and hence the
solution itself, is a stochastic process. Stud stochastic processes requieesleparture from tl familiar deterministic
settingof ordinary and partial differential equatic into a world where the evolution of a quantity laasinherent rando

component and where the expedbethavio of this quantity can be described in termfigrobability distribution:

Depending on thenathematical mode we have a number of numeridaichniques i our disposal. Using the
Milstein’s higher order methoih [2] to find the stron solution of system (2.2) withiven initial value and the values of
parameters. There can be malifferent approaches deriving SDE model frorthe deterministic model, which may le
to different dynamical outcomem this sul- section, we compare the dynamafsstochastic differenti equations with

large diffusion terms.

In the first time taking theoefficientt F (S, 1, R) =S, G(S, |, R) =l ard (S, | , R) = R, the correspond
discretization of model is :

' B} S S:l; e 4 T8 o o0
Sit1 = Si + (Trﬂj(-— - F) - 1ﬂ| 1 )-lf +ogSivAts + ?"'5:'(?-:5 - 1)at
(]

.

al. T,
I:’ :Ii ifi
+1 +(1+ui,

2
| Rit1 = Ri(1 — 6)At + 7L:AL + 0 g RivAIG + HERi((F - 1)At

- *.rf.-)-if + o I;VAt; + ?I;{n? — 1)At

(2.5)
whereéi , ni and(i, i =1, ..., nare the Gaussian random variables N(0, 1).
2.5.1. Numerical Results

In this part, we give thebtained numeric results the Milstein’s highearder metho implemented using Matlab

software. Thegparameters used are represented in following T

Table 1. Values of the parameters

Parameter & r. a a 4 )

Value 1000 05 23 149 025 043
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Figure 1: Solution of Stochastic Model

Figure 1 shows that the susceptible S, infectis@d removed R population will be oscillating by th@se but
around & = (1.0093, 2.1807, 1.2679) with the noise intéesitespectivelys = 0.12ci = 0.1,0r = 0.21.

Foros = 2.726i = 1.89,0r = 1.51.

Point d'equilibre {1.0093,2.1807,1.2679)
*. T T T
*

Figure 2: Solution of Stochastic Model

From Figure 2, one can see that with increasingribise intensities, the solutions of model (2.2)l we

oscillating strongly around the endemic point
Ex = (1.0093, 2.1807, 1.2679) of model (2.6).

Remark 2.2. The effects of the intensity of noise levels Friigures 1 and 2, we can conclude that, when the
intensity of noise is small, the stochastic modelsprves the property of the global stability. his tcase, we can ignore
noise and use the deterministic model to approxrtia¢ population dynamics. However, the large sitgrof noise can
force the solutions of model (2.2) to oscillateosggly around the disease-free. In these casesawaot ignore the effect

of noise, therefore, we cannot use deterministidehbut stochastic model to describe the populatioramics.

In this part we change the functions F, G and Krafer to compare the fluctuation of System forgsame values
of ok , k = S, I, R. taking the coefficients F (S, R) = exp(S), G(S, | , R) = exp(l ) and H (S, I) Rexp(R), the

corresponding discretization of model is :
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£ exp(S;)(£2 — 1)At

T

( S, aS; I, o
— o i s L\ AE -exp( S WALE: + ==
Siy1 =8;+ (hS,(l k) 1+ﬂ1i).ﬁt+ab exp(S; )V AL, + 2

$ aS, 1, o3 i
.Ir,+1 =.If,'+ m —":.L; At‘l"ﬂ'ft‘xpl:fi}\-'.&”?f‘}-EE‘.KP(L;)(FL; —l)ﬁf
aif;

(| Riy1 = Ri(1 - 8)At + v At + opexp(R, )V AL + E-_E*E‘xpfﬁx)(t;,ﬁ —1)At

(2.6)
whereéi , ni and(i, i =1, ..., n, are the Gauss random variables N(O, 1).

Taking the same values 6$ = 0.12ci = 0.1,6r = 0.21 using in Figure 1, above in view to com both figures.

Point d'equilibre {1.0093,2.1807,1.2679)

05
0

Figure 3: Solution of Stochastic Model

Figure 3 illustratdluctuations around the equilibrium points£= (1.0093, 2.1807, 1.267 In fact when varying
functions F, G and H in ordéo enlarge the diffusion coefficients, tt the fluctuation increases comp to figurel. When

we take the same values = 2.72gi = 1.89,0r = 1.51 as figure 2, we have:

Point d'equilibre (1.0083 2.1807,1.2679)

=
=y
—*

Figure 4: Solution of Stochastic

In this case we remathat the fluctuations around the equilibrium poimas increase greatly in this figure.
3. CONCLUSIONS

In this paper, we extenddlde SIR epidemic model conside in [1]. In particular we analy: the epidemic model

in a stochastic environment. Theterest of this stuc lies in two aspects.

First, it presentshe existence and uniqueness of solution usindgiterc iteration metho in the global behavior.

Second, it performs some numerisahulations to illustrate the analytical resultsstdchastic model (2.2) by referring
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Milstein’s higher order method, and then a compagahumerical study is done for different value ofaround the

equilibrium epidemic. To study the effect of pebation noise on the deterministic SIR model (2vig, stochastically

perturb model (2.6) with respect to white noiseuarbits endemic equilibrium depending on the intégsof noises. We

conclude when the intensities of noise are notigafitly large, the population of the stochastic deio may be

stochastically permanent around of equilibrium epiét.
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